Development of a new material for creating more ecological, efficient and economic refrigeration systems

Two teams based at the Barcelona Knowledge Campus, one from the University of Barcelona (UB) and one from the Universitat Politècnica de Catalunya (UPC), have worked with a group from the University of Duisburg-Essen (Germany) to develop a new solid material that produces a caloric effect under hydrostatic pressure (solid-state barocaloric effect). The work was carried out using a high-pressure system developed by the UPC, which is the only one of its type in Spain. The research is described in an article published in the scientific journal Nature Materials and was inspired by guidelines in the Kyoto protocol on renewing current refrigeration systems based on the compression of harmful gases.

Two teams based at the Barcelona Knowledge Campus, one from the University of Barcelona (UB) and one from the Universitat Politècnica de Catalunya (UPC), have worked with a group from the University of Duisburg-Essen (Germany) to develop a new solid material that produces a caloric effect under hydrostatic pressure (solid-state barocaloric effect). The work was carried out using a high-pressure system developed by the UPC, which is the only one of its type in Spain. The research is described in an article published in the scientific journal Nature Materials and was inspired by guidelines in the Kyoto protocol on renewing current refrigeration systems based on the compression of harmful gases.
Research into materials showing large caloric effects close to room temperature is one of the areas currently being explored to develop new refrigeration systems. Until recently, the most promising materials for applications in this field were giant magnetocaloric materials, which change temperature under the influence of an external magnetic field. The authors of this new study show that application of a moderate hydrostatic pressure to a nickel-manganese-indium alloy (Ni-Mn-In) produces results comparable to those achieved with the most effective magnetocaloric materials. According to Lluís Mañosa, a professor with the Department of Structure and Constituents of Matter at the UB and principal investigator of the study, "the aim of this field of research is to identify materials that are efficient, economic and environmentally respectful, and the advantages of the alloy used in this study is that all of the component materials meet these requirements".
In addition, Antoni Planes, a professor with the same UN department, explains that, "this type of material can produce much greater caloric effects with only slight variations in pressure, which makes it ideal for domestic refrigeration systems (refrigerators, air conditioning, etc.)". When these alloys are submitted to an external field, either magnetic or pressure, the material undergoes a solid-state phase transition, and Lluís Mañosa explains that, "this phase change generates a considerable latent heat exchange". The physical principle involved is the same as the effect observed when an ice cube is placed into a glass of water: the ice absorbs heat from the water, lowering its temperature.
Mañosa, Lluís; González-Alonso, David; Planes, Antoni; Bonnot, Erell; Barrio, Maria; Tamarit, Josep-Lluís; Aksoy, Seda; Acet, Mehmet. " Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy". Nature Materials. Publshed online on 4 April 2010. doi:10.1038/nmat2731.